Multiscale supercomputer simulation of gas purification processes

Sergey Polyakov, Yuri Karamzin, Tatiana Kydryashova, Viktoriya Podryga, Dmitry Puzyrkov, Nikita Tarasov

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences
Moscow, Russia
Indoor air may be polluted with various impurities. Poor quality of building components, a large number of electronic equipment and poor-quality cleaning contribute to this. A lot of dust accumulates on the bookshelves...

High humidity in the room creates the conditions for harmful bacteria and mold. Polluted air reduces the human performance, affects health.

Nanotechnology products enter the environment without studying the effects of this process.

Air purification is an important condition to create the balance of air at home and work areas.

S. Polyakov, Yu. Karamzin, T. Kudryashova, et al. KIAM RAS
APPLICATIONS

- the electronics industry to create clean industrial rooms;
- precision engineering and aerospace industry;
- healthcare to create sterile environment;
- the microbiological and pharmaceutical industry to produce drugs and products;
- the chemical industry to obtain a dust-free atmosphere in film and photo production;
- the nuclear industry for air purification from radioactive aerosols;
- the food industry in food production plants.
- homes, hotels, offices where clean air is especially needed to ensure human health.

S. Polyakov, Yu. Karamzin, T. Kudryashova, et al. KIAM RAS
PHYSICAL METHODS

Mechanical ways for dust, mist, oils, gaseous impurities

Filters:
- Mechanical.
- Electrostatic.
- Carbon.
- Photocatalytic.
- Water.

Physico-chemical ways

Sorption
- Adsorption
- Absorption

Catalytic (neutralization of impurities with a catalyst)
Dry, unpolluted air has the following chemical composition: nitrogen - 78.08%, oxygen - 20.95%, inert gases - 0.94%, carbon dioxide - 0.03%.
SORPTION AIR PURIFIER

In - Polluted air inlet;
Out - Purified air outlet;
1 - Sorption chamber.

The sorption technology is based on the ability of certain substances (sorbents) to capture harmful gases or particles from air. The cleaning unit is a container with a sorbent. Polluted air is passed through this container. After saturation of the sorbent, it is burned, or is to be buried, or undergoes regeneration.
Calculations were carried out for 2D (x-y) and 3D(x-y-z) geometry
MULTISCALE APPROACH

Macro level: the sizes of the technical system (TS) are lengths of structural elements

Micro level: the sizes of the near surface layers of the channels and structural units are close to atomic (~20-100 nm)

The multiscale approach is based on the use of two models describing physical processes at the macro and micro levels.

Newton's system of equations (MD) is used as a micromodel

As a macro model, the system of equations of hydrodynamics (GD) is applied
MACRO MODEL: QUASI GAS DYNAMIC (QGD) EQUATION SYSTEM FOR GAS MIXTURE

\[
\frac{\partial \rho_l}{\partial t} + \text{div} \ W_l^{(\rho)} = 0, \quad W_l^{(\rho)} = \rho_l \mathbf{u}_l - \rho_l \mathbf{w}_l, \quad \mathbf{w}_l = \tau \left(\mathbf{u}_l, \nabla \right) \mathbf{u}_l + \frac{1}{\rho_l} \nabla p_l,
\]

\[
\frac{\partial \rho_l u_{l,k}}{\partial t} + \text{div} \ W_l^{(\rho u_k)} = S_l^{(\rho u_k)},
\]

\[
W_l^{(\rho u_k)} = \rho_l \mathbf{u}_l \mathbf{u}_{l,k} + \mathbf{e}_k \left(p_l + \frac{2}{3} \mu \text{div} \mathbf{u}_l \right) - \mu_l \left(\nabla u_{l,k} + \left(\nabla, \mathbf{e}_k \right) \mathbf{u}_l \right) - \left(\rho_l w_{l,k} \mathbf{u}_l + \rho_l \mathbf{w}_l \mathbf{u}_{l,k} \right),
\]

\[
S_l^{(\rho u_k)} = v_{l l'} \rho_l \left(\bar{u}_{l,k} - u_{l,k} \right), \quad l = a, b, \quad l' = b, a, \quad k = 1, 2, 3,
\]

\[
\frac{\partial}{\partial t} E_l + \text{div} \ W_l^{(E)} = S_l^{(E)},
\]

\[
W_l^{(E)} = \left(\rho_l \mathbf{u}_l - \rho_l \mathbf{w}_l \right) H_l - \chi_l \nabla T_l + \left(\frac{2}{3} \mu \text{div} \mathbf{u}_l \right) \mathbf{u}_l - \sum_{k=1,2,3} \mu \left(\nabla u_{l,k} + \left(\nabla, \mathbf{e}_k \right) \mathbf{u}_l \right) + \left(\rho_l w_{l,k} \mathbf{u}_l + \rho_l \mathbf{w}_l \mathbf{u}_{l,k} \right),
\]

\[
S_l^{(E)} = v_{l l'} \rho_l \left(\bar{E}_l - E_l \right), \quad l = a, b, \quad l' = b, a, \quad E_l = \frac{1}{2} \rho_l \left| \mathbf{u}_l \right|^2 + \rho_l \varepsilon_l, \quad p_l = Z_l \rho_l \mathcal{R}_l T_l, \quad \varepsilon_l = c_v l T_l
\]
Newton's system of equations

\[
\begin{align*}
\frac{m_i}{dt} \frac{d\mathbf{v}_{i,i}}{dt} &= \mathbf{F}_{l,i}, \\
\frac{d\mathbf{r}_{i,i}}{dt} &= \mathbf{v}_{i,i},
\end{align*}
\]

\(i\) - particle number,
\(l\) - particle type,
\(N_l\) - total particle \(l\) type
\(l,i\) - particle \(l\) type with \(i\) number
\(m_{l,i}\) - particle mass

\[
\mathbf{F}_{l,i} = -\frac{\partial U(\mathbf{r}_{i,1},...\mathbf{r}_{i,N})}{\partial \mathbf{r}_{i,i}} + \mathbf{F}_{\text{ext}}^{\text{eq}},
\]

\(i = 1,...,N_l, \quad l = 1,...,N_{\text{tot}} \quad (N_{\text{tot}} = N_{\text{gas}} + N_{\text{met}}),\)

\[
\mathbf{r}_{i,i} = \left(r_{x,i,i}, r_{y,i,i}, r_{z,i,i}\right) \quad \text{- radius vector}
\]

\[
\mathbf{v}_{i,i} = \left(v_{x,i,i}, v_{y,i,i}, v_{z,i,i}\right) \quad \text{- speed vector}
\]

\[
\mathbf{F}_{l,i} = \left(F_{x,i,i}, F_{y,i,i}, F_{z,i,i}\right) \quad \text{- total force acting on this particle}
\]
INITIAL CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature $T(K)$</td>
<td>273.15</td>
</tr>
<tr>
<td>Pressure p (Pa)</td>
<td>101325</td>
</tr>
<tr>
<td>Density ρ (kg/m3)</td>
<td>1.25</td>
</tr>
<tr>
<td>Viscosity μ (kg/(m·s))</td>
<td>1.7894×10^{-5}</td>
</tr>
<tr>
<td>Input flow velocity u_i (m/s)</td>
<td>0.143152</td>
</tr>
<tr>
<td>Computational domain (m^2)</td>
<td>0.04 x 0.02</td>
</tr>
</tbody>
</table>

The initial conditions correspond to the equilibrium gas environment in the absence of interaction with external factors.

The initial conditions at the microlevel are determined by the equilibrium or quasiequilibrium thermodynamic state of the particle system at a given temperature, pressure, and average momentum.
BOUNDARY CONDITIONS

The Pauseuil flow is set at the entrance to the system, the so-called “soft” boundary conditions are set at the exit from the system

\[
\frac{\partial \rho_i}{\partial n} = 0, \quad \frac{\partial (\rho_i \mathbf{u}_i)}{\partial n} = 0, \quad \frac{\partial p_i}{\partial n} = 0, \quad l = a, b.
\]

On solid walls of the channel, conditions of sliding are specified.

\[
u_x = 0, \quad \frac{\partial u_x}{\partial x} = 0, \quad \frac{\partial p}{\partial y} = 0, \quad \frac{\partial T}{\partial y} = 0
\]

On the surface of the granules,

\[
u_x = 0, \quad \frac{\partial u_x}{\partial x} = 0, \quad \frac{\partial p}{\partial y} = 0, \quad \frac{\partial T}{\partial y} = 0
\]

These conditions describe the process of absorption of a part of the energy and momentum of a gas by the surface of a granules.

\[
(W_{i}^{(\rho)}, \mathbf{n}) = -\alpha_i (\rho_i - \rho_i^{(w)}), \quad (W_{i}^{(\rho \mathbf{n} \mathbf{n})}, \mathbf{n}) = -\beta_{i,k} (\rho_i \mathbf{u}_{i,k} - \rho_i^{(w)} \mathbf{u}_{i,k}^{(w)}), \quad k = x, y, z, \quad (W_{k}^{(C)}, \mathbf{n}) = -A_k \left(C_k - C_k^* \right) \left(C_k^{**} - C_k \right).
\]

\[
(W_{i}^{(E)}, \mathbf{n}) = -\eta_i (E_i - E_i^{(w)}), \quad l = a, b.
\]
1. Consistently:

We analyze the adhesion process of nanoparticles to the surface of the sorbent granule or absorption of nanoparticles by sorbent granule (MD method). Based on such a calculation, the parameters boundary conditions on the surface of the granule are formed. Then they are used in macro model (QGD equations).

2. Parallel:

In this case, parameters of boundary conditions on each granule are calculated by MD method before the next step of QGD modeling.
The system of QGD equations is solved on the basis of the explicit time grid numerical algorithm.

For 2D case, quadrangular and triangular cells were used. In 3D case, parallelepipeds, tetrahedrons and prisms with a triangular base were used as cells.

Rough meshes in the 2D case and triangular meshes on the surface of the granules were constructed using an original algorithm based on the Delone criterion. Tetrahedral meshes were built in the ANSYS CFX package.
NUMERICAL ALGORITHM FOR MICRO LEVEL

\[F_{l,i}^0 = F_{l,i} \left(r_{l,i,1}^0, ..., r_{l,i,N_l}^0; ..., r_{N_{tot},1}^0, ..., r_{N_{tot},N_{tot}}^0 \right), \quad i = 1, ..., N_l, \quad l = 1, ..., N_{tot}; \]

\[\forall n = 0, 1, 2, ..., \quad r_{l,i}^{n+1} = r_{l,i}^n + v_{l,i}^n \Delta t + \frac{F_{l,i}^n}{m_i} \left(\frac{(\Delta t)^2}{2} \right), \quad i = 1, ..., N_l, \quad l = 1, ..., N_{tot}; \]

\[F_{l,i}^{n+1} = F_{l,i} \left(r_{l,i,1}^{n+1}, ..., r_{l,i,N_l}^{n+1}; ..., r_{N_{tot},1}^{n+1}, ..., r_{N_{tot},N_{tot}}^{n+1} \right), \quad i = 1, ..., N_l, \quad l = 1, ..., N_{tot}; \]

\[v_{l,i}^{n+1} = v_{l,i}^n + \frac{F_{l,i}^{n+1} + F_{l,i}^n}{2m_i} \Delta t, \quad i = 1, ..., N_l, \quad l = 1, ..., N_{tot}. \]

To achieve a given temperature by the microsystem, the Berendsen thermostat is used.

To achieve a given temperature and momentum, the Langevin thermostat is used.
Circles (with a radius of 0.001 m and number is 40) and ovals of elliptical shape were considered as granules (with the main axes of 0.002 m and 0.001 m and number is 21).

Both configurations were chosen as follows:
- the granules fill the channel completely,
- the sorbent layer was about the same thickness,
- the areas occupied by the granules approximately coincided

\[S_{\text{sphere}} = 1.2566 \, cm^2 \quad S_{\text{Ellipse}} = 1.3195 \, cm^2 \]

Software: Intel C++/Fortran, MPI Library, OpenMP Library, CUDA Toolkit

Parallel technologies: MPI + OpenMP or MPI + OpenMP + CUDA
The domain decomposition technique for different architecture levels: domain decomposition, nodes of the system, shared memory of cores, thread parallelization.
DOMAIN DECOMPOSITION AND LOAD BALANCING

3D computational domain

domain decomposition:
pipe decomposition – for inlet and outlet areas,
2d decomposition – for sorbent area
<table>
<thead>
<tr>
<th>System</th>
<th>Node number</th>
<th>Interconnect type</th>
<th>Processor type</th>
<th>Performance, TFLOPS</th>
<th>Processors per node</th>
<th>Threads per node</th>
<th>RAM per node, GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>K60-CPU</td>
<td>78</td>
<td>InfiniBand FDR, 56 Gbit/s</td>
<td>Intel Xeon E5-2690 v4, 2.6 GHz</td>
<td>74,2</td>
<td>2</td>
<td>28</td>
<td>256</td>
</tr>
<tr>
<td>K60-GPU</td>
<td>8</td>
<td>InfiniBand FDR, 56 Gbit/s</td>
<td>NVidia Tesla V100-PCIe, 1.75 GHz</td>
<td>240</td>
<td>4</td>
<td>5120</td>
<td>128</td>
</tr>
<tr>
<td>K48-VPU</td>
<td>16</td>
<td>OmniPath, 100 Gbit/s</td>
<td>Intel Xeon Phi KNL 7250F, 1.4 GHz</td>
<td>48</td>
<td>1</td>
<td>272</td>
<td>112</td>
</tr>
<tr>
<td>SC/Processor number</td>
<td>1*)</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>Acceleration with the maximum number of calculators</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>K60-GPU</td>
<td>8.832</td>
<td>5.076</td>
<td>2.751</td>
<td>1.670</td>
<td>1.316</td>
<td>0.972</td>
<td>9.144</td>
</tr>
<tr>
<td>K48-VPU</td>
<td>68.964</td>
<td>35.733</td>
<td>18.612</td>
<td>10.134</td>
<td>5.442</td>
<td>2.964</td>
<td>23.267</td>
</tr>
</tbody>
</table>

*) to achieve the minimum time of the task solution on the calculator, the optimal number of parallel flows (blocks) was selected.

- for processors on the K60-CPU, the optimal number of parallel threads was 28,
- for processors on K48-VPU - 64.
- on the K60-GPU, the linear memory structure with the number of blocks 160 and the number of parallel threads in the block 512.
Concentration of pollutant
3D RESULTS: POLLUTION CONCENTRATION

S. Polyakov, Yu. Karamzin, T. Kudryashova, et al. KIAM RAS
The supercomputer modeling technology for air purification processes are presented in the paper.

The simulated cleaning method is based on the use of granular sorbents. Mathematical model, numerical algorithm and its parallel implementation were developed.

Originality of this approach is the use of QGD method with multiscale approach.

Test calculations confirmed the performance of the developed supercomputer technology.

THANKS FOR THE ATTENTION!