Investigating performance of the XAMG library for solving linear systems with multiple right-hand sides

Boris Krasnopolsky, Alexey V. Medvedev
Institute of Mechanics, Lomonosov Moscow State University

The presented work is supported by RSF grant No. 18-71-10075.
The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.
XAMG: Is a C++ library to solver large-scale sparse linear systems (SLAEs) with multiple right-hand sides (RHS)
 → iterative methods: BiCGStab + CAMG + smoothers
 → Multicore + MPI + (GPU: WIP)

RSF grant No. 18-71-10075

B.Krasnopol'sky, A.Medvedev
«XAMG: A library for solving linear systems with multiple right-hand side vectors»

git: https://gitlab.com/xamg
License: dual licensed: GPL or commercial
Multiple RHS

\[|A| \cdot x_1 = b_1 \]
\[|A| \cdot x_2 = b_2 \]
\[\ldots \]
\[|A| \cdot x_n = b_n \]

\[|A| \cdot \{ x_1, x_2, \ldots, x_n \} = \{ b_1, b_2, \ldots, b_n \} \]
Solution with multiple RHSs

vs.

Multiple runs with single RHS

Speedup level?
Solution with multiple RHSs

vs.

Speedup level?

Multiple runs with single RHS

B. Krasnopolisky

«Revisiting performance of BiCGStab methods for solving systems with multiple right-hand sides»

Predicted speedup: \(~1.5x \ldots 2x \ldots 2.5x\)

(depends on matrix size, parallel scale, number of RHS)
Motivation

- No available universal CAMG implementation for multiple RHS
- New C++11 code base allows experiments with up-to-date ideas of improving sparse solvers
XAMG architecture highlights

- Use *hypre* library code for CAMG hierarchy construction

«HYPRE: High performance preconditioners»
http://www.llnl.gov/CASC/hypre/

- We do not extend or fork *hypre* code, just use it for hierarchy construction

- Special mode: per-level hierarchy
XAMG architecture highlights

- Number of RHS as a template parameter

- Sets up the number of vectors at compile time

- So, compiler is able to generate vector instructions for inner loops

- Index and value types (integer and floating point) are also template parameters
XAMG architecture highlights

- Variative choice of sparse matrix storage format
- Matrix is dynamically polymorphic: inheritance
- It is possible to combine different storage formats to get best productivity
 - for different multigrid hierarchy levels
 - for parts of a single matrix
XAMG architecture highlights

- Index compression: detect which integer index data size is enough for each hierarchy level

- Floating point size: 32-bit floating point precision instead of 64-bit for smaller hierarchy levels

- Combined dynamic and static polymorphism: «creator» functions for matrix objects are huge (large if-else trees)
 → automatic code generation is used:
 https://github.com/a-v-medvedev/cppcgen
XAMG architecture highlights

- **MPI+ShM** hybrid parallel programming model

- On communication level:
 - decomposition of parallel communications into intra-node and inter-node levels
 - implementation of intra-node communications using communication POSIX shared memory primitives

- On data level:
 - matrices and vectors are allocated in POSIX shared memory and split specifically
Performance: XAMG vs. hypre

Single node; Poisson cubic grid (size = $50^3...300^3$); Pure MPI mode
Performance: multiple RHS

Single node; Poisson cubic 150^3; Pure MPI mode
Performance: mixed precision

Single node; Poisson cubic 200^3; Pure MPI mode
Performance: scalability

HPC4, 2..40 nodes; Poisson cubic 150^3; and 250^3;
Performance: scalability

2.7 mln unkn. strong scaling

9.7 mln unkn. strong scaling

Lomonosov-2, 2..28 nodes; Poisson channel flow problem
Conclusions

- Multiple RHS feature improves calculation times

- Complex code architecture opens up the way to implement:
 - automatic index data type compression
 - mixed precision of floating point data
 - combination of different matrix storage formats
 - complex algorithms like Iterative Refinement
 - advanced per-level CAMG configuration & auto-tuning

- Index and data compression improves productivity and scalability

- MPI+ShM parallel programming model improves scalability significantly
Future work

- GPU solver implementation (*WIP*)
- More advanced matrix storage formats and their combination (*WIP*)
- FP16 for mixed precision
- Automatic optimization of per-level CAMG tuning parameters (*WIP*)
- Connection with real-world applications
Thank you!

e-mail: krasnopolsky@imec.msu.ru
e-mail: a.medvedev@imec.msu.ru
Hardware

- **Lomonosov-2:**
 Intel Xeon E5-2697v3; 1xCPU: 14 cores
 Infiniband FDR

- **HPC4:**
 Intel Xeon E5-2680v3; 2xCPU: 24 cores
 Infiniband QDR